
1

Technical Design Document

Case Closed

Flinn Fraher

2

Table of Contents

Table of Contents ... 2

Introduction: .. 4

Project Name ... 4

Project Genre ... 4

Project Key Goal/s .. 4

Project Key Challenges and Risks ... 4

Software and Hardware Required ... 4

Platforms: ... 5

Minimum Platform Specification / Recommended Specification 5

Minimum Requirements ... 5
Recommended Requirements ... 5

Engine Specifics Specifications and Limits ... 5

Storage / Disk Budget .. 5

Texture Compression ... 5

Engine Summary: ... 6

Engine Version ... 6

Plugins / Middleware ... 6

Game Systems and Diagrams ... 7

Game Mechanics .. 7

Camera Movement .. 7
Player Movement ... 7

Puzzles 7

Inventory System and Items .. 10
Dialogue 11

Environmental Interaction .. 13

Game Loops .. 14

Data Flow ... 18

Art Workflows .. 18

Geometry .. 18

Materials & Textures .. 18

Animation ... 18

Camera Management ... 19

Camera Manager ... 19

Collision .. 19

GUI 19

Menu Wireframe .. 19

Fonts 19

Audio / Video .. 19

Tools 20

Optimisation & Profiling ... 21

3

Profiling Script ... 21

Profiling Graphics & Rendering .. 21

Coding Standards and Summary .. 22

Programming Standards ... 22

Style Guide ... 22

Commenting Rules ... 22

Code Review Procedures .. 22

4

Introduction:

Project Name

Point & Click Adventure Framework

Project Genre

Point & Click Puzzle/Adventure

Project Key Goal/s

To create a robust toolset for the creation of a point & click adventure game, with an
accompanying vertical slice/demo project to assist in usage.

Project Key Challenges and Risks

• Dialogue system – creating this using UE4’s behaviour tree system as an FSM.
• Interaction system

Software and Hardware Required

• Unreal Engine 4.26.X

• Blender
o Jim Kroovy’s Mr Mannequin Tools – Animation pose creation

• Adobe’s Mixamo

https://jimkroovy.gumroad.com/l/MrMannequinsTools
https://www.mixamo.com/

5

Platforms:

The chosen target platform for this framework will be PC, although the framework could easily be

adapted to work with touch controls, and possibly mobile platforms if the environment/art assets are

of a suitable quality level.

Minimum Platform Specification / Recommended Specification

The minimum and recommended platform requirements for a build of the vertical slice are shown

below. Note that these requirements will vary in other titles made using the framework.

Minimum Requirements

Intel Core i3 2.4GHz or AMD Ryzen 3 3200

4GB RAM

PACKAGED SIZE HERE GB of free space

Windows 10

GPU with DX11 support or higher

Recommended Requirements

Intel Core i5 2.8GHz or AMD Ryzen 5 3500

8GB RAM

PACKAGED SIZE HERE GB of free space

Nvidia GeForce GTX 670/ AMD Radeon HD 7870 or equivalent GPU with 2GB of dedicated VRAM or

higher, DX 11 support or higher

Windows 10 64-bit

Engine Specifics Specifications and Limits

Storage / Disk Budget

The base size of the framework’s uproject on disk is 15GB.

Texture Compression

To ensure asset materials take up minimal storage space, any texture which is not utilised
by UMG components in the framework will have Unreal’s texture compression applied by
default

6

Engine Summary:

Engine Version

The engine version used will be the official release of Unreal Engine 4.26.2

Plugins / Middleware

The framework will not require the use of any third party plugins, however should a designer
decide to add additional plugins during their own development, the base framework will not
pose any conflict issues.

7

Game Systems and Diagrams

Game Mechanics

Camera Movement

The camera during gameplay is determined by which room the player is currently in – these

cameras can be placed by the designer in-engine and connected to specific rooms in the

level which are represented by geometry the designer can customise. The camera switches

when the player leaves the current camera region and moves to a different area – this

switch takes place smoothly by interpolating between the two camera’s locations.

Player Movement

Player movement is achieved by left clicking on a walkable surface in the game world. The

player character then moves to the chosen location using Unreal’s built-in pathfinding

solution. If an interactable object is clicked instead, depending on the object the player may

still move to the clicked location, before then playing an animation of picking the object up

or interacting with it, however these events are handled by the interaction system.

Puzzles

The base framework has three core puzzles – a combination lock, an electrical grid-based

puzzle, and a ‘slider’ puzzle.

Combination Lock

The combination lock utilises two main actors in-game – a lock base, which derives from the

BasePuzzle actor and uses event dispatchers to communicate the current state of the puzzle to other

gameplay objects, and the puzzle tumblers, which handle communication between the core puzzle

and the player. The player can rotate each tumbler of the lock clockwise to the next digit by clicking it

– when the tumblers are in an orientation which equates to the puzzles correct combination, the lock

is opened.

8

9

Slider Puzzle

Like the grid-based puzzles, slider puzzles task the player with manipulating shuffled cut-out squares

of an image back to the original image’s form. By clicking on a square with a free space next to it, the

player can move a section of the image to the free space, allowing the movement of some adjacent

pieces. Eventually through these movements, the orientation of each square will correspond to that

section’s position in the original image.

Figure X shows a representation of an abstracted

version of this puzzle type. The ’15 puzzle’

requires a player to move each numbered square

into a state such that the numbers count from the

top left-hand side to 15 in order.

This core idea is identical to the slider puzzle I

intend to implement, only instead of ordering

numbers, squares need to be orientated to view

the final image they collectively make (see Fig. Y)

10

Inventory System and Items

The framework’s inventory system utilises a series of data tables, with each entry having a

unique ID to differentiate each item in the game. The framework supports a selection of

different object types:

• Puzzle items – items which are required to complete a specific puzzle in the game –

these items can be linked to actors in the game and be used to gate completion of a

puzzle before obtaining this item and combining it with its associated puzzle actor.

• Conversational items – items which can be selected and used on NPCs to trigger new

conversation options when speaking to them. These items can also be used to

sequentially progress gameplay objectives depending on the dialogue options they

allow access to. For instance, an NPC might ask the player to find an item they want

to progress – the player can then find that item and give it to them which

subsequently completes a gameplay objective

• Combinational items – items which can be combined with others to create a unique

item. This is arguably more of a sub-category, as the item created from combining

two of these could be any of the other categories listed here.

• Misc. items – items which don’t serve a particular purpose, but might provide hints to

the player on how to progress when interacted with/inspected

11

Dialogue

The dialogue system makes use of Unreal’s finite state machine system inside of AI

behaviour trees. Each segment of dialogue is represented as a single task inside the

behaviour tree and can have either one or many connected nodes depending on the

dialogue prompt’s type.

The types are as follows:

• Standard dialogue – statement said by any character in the game. Connects to

either a standard dialogue node, or a dialogue choice

• Dialogue choice –

o Standard choice – a statement which is followed by a selection of

responses the player can choose between. Each choice can connect to any

other dialogue node

o Conditional choice – a dialogue response which can only be seen/selected

if the player has met a certain condition. The condition is driven by a

behaviour tree decorator which can check if specific gameplay parameters

have been met. A designer can make children of this base to check if different

world events have been met and attach them to relevant dialogue tasks.

• End conversation – a node which ends the current conversation and returns the

player to normal gameplay.

• World Task Nodes – nodes which don’t display any dialogue but cause an in-game

event to occur. A designer can make a child task of this and implement custom

behaviour if they desire. This task will have a reference to the player character, the

NPC currently in dialogue, and the game’s objective manager.

Conditional nodes, and gameplay-driven logic

performing checks inside the conversation will be done using the standard methods inside

behaviour trees – selectors and decorators that allow the dialogue to be driven by player,

actor references and objective state.

Ambient Dialogue

Ambient dialogue can also take place during gameplay – this is dialogue that the player

character or other NPC’s can say without triggering the dialogue interface. This will be used

to convey information when interacting with environment objects, or to display hints when

interacting with different items in a manner like other games in this genre (Grim Fandango,

Twelve Minutes, Harvester, etc.)

12

Example Dialogue Tree

Figure 1 - An example of a basic dialogue tree. Yellow nodes are NPC dialogue, blue is player dialogue, and purple are

custom BT nodes which are context-specific

13

Environmental Interaction

Interaction with in-game objects will be handled through one of the core hierarchies of the

framework – using an interface which is implemented on the player controller, an

interactable object can call an OnInteract event when the player is within a minimum

specified distance, and the player clicks on the object. When this is called, the interaction

sequence for the specified object takes place – this varies per object, and can be

implemented on each actor which derives from the BaseInteractable C++ class.

You should reference key gameplay features and mechanics.

Each mechanic should have a brief description of what it is and how it works.
Each mechanic shoulder reference game engine variables so that the design team can reuse
/ balance.

14

Game Loops

15

16

When are Child Actors used?

17

18

What are the key components?
What are Macros Used

Data Flow

Show a diagram of main initiation chains / spawning of major classes
Link to data tables for stats driven features
When are Instance Editable Variables used?
When are Interfaces and Casts used?

Art Workflows

Geometry

Geometry used in the framework is being created using Blender. To ensure each model is
visually consistent when imported into the engine, several standards are being adhered to
when creating meshes:

- The tri-count of created meshes should be at a reasonable level to the models scale
and where it will be viewed in game. The hard limit for tris on meshes in the
framework is 40,000, although I don’t expect any of the meshes being created to
reach close to it. This is both to keep the framework performant and enable a
developer using the framework to easily export and edit the packaged meshes
without running into issues that larger tri-counts can potentially cause in some
modelling software.

- The normals and smoothing groups of exported meshes should be correctly
configured – normals for each face on the mesh should be facing outwards to avoid
holes when importing into Unreal, and the smoothing angle should be appropriately
set on the asset being created.

A few asset packs are being used which include some pre-made static meshes (see the asset
list for a breakdown of these). The assets created to use alongside these meshes should
attempt to follow the same stylistic conventions as the asset packs to keep the
environment’s appearance consistent.

Materials & Textures

What packages are being used
What file format should images be i.e. TGA / PNG
Are there Master Materials
What rendering pipeline is being used i.e. PBR
Are there any texture size / Texel density considerations?

Animation

Other than the default third person mannequin animations included inside Unreal’s top down

framework, animations for the framework are made using Blender, with Mr Mannequin’s (MQ) plugin.

MQ’s plugin contains a pre-rigged version of Unreal’s third person mannequin in both male and female

forms, and also includes a variety of handy additions to the rig such as IK for the hands and limbs,

head movement to a ‘look at’ point, and rotation distribution of finger movement by just moving the

base bone of the finger. MQ’s plugin also includes an exporter specifically made for use with Unreal

Engine and the plugin’s rig – this will be used to export all of the animations and poses created inside

Blender with the tool.

19

Camera Management

Camera Manager

The camera manager in the framework is driven through by the player pawn’s position in the world in

relation to the active room actors in the level. Room actors each have a customisable collider which

can be configured by a designer and is configured to call an interface on the player controller which

allows the current camera to be changed when a player enters the room. The transition between the

player’s current camera and the new rooms camera can take place as either a fade, or an

interpolation between the two cameras depending on if geometry is detected that blocks a trace

between the current camera and the new one. Each room’s camera is fully modifiable inside the

editor, giving a designer the ability to orient the camera in world-space as they see fit. Each camera is

attached to a spring arm with a consistent length of 1200 Unreal units to keep the camera and

viewport perspective as consistent as possible.

Collision

The collision for all meshes is handled inside engine on a by-mesh basis – using the asset editor for

meshes inside Unreal, the simple collision for each mesh can be modified after they are imported, and
in the case of more complex meshes the property ‘use complex collision as simple’ can be enabled to

ensure collision is accurate, although this should only be used when absolutely required.

GUI

The textures, materials, and other elements of the UI are all produced inside Adobe Photoshop,

exported as .PNG files, and imported into the engine with custom settings. To ensure the UI has an

appropriate resolution for any modern display, the import settings for each UI texture are configured

to use no compression, filtering, and are set to the UserInterface2D preset inside Unreal’s asset

property editor.

• The inventory icons are all 64x64 pixels in size

• When imported into Unreal, the textures for UI icons are set to have the UI texture domain,

and to have no compression.

Photoshop is being used to create the textures for use inside the framework where required.
When making a texture for a static or skeletal mesh, the textures will be exported in .TGA
format and imported into the engine with default compression. When making textures
What Texture Compression should be used in engine
What image resolution limits are there

Menu Wireframe

Flow chart of Menu

Fonts

https://www.dafont.com/breamcatcher.font <Typodermic Fonts, Breamcatcher>

The Breamcatcher font is used in all UMG elements of the framework to keep consistency
through the UI.

Audio / Video

What Media formats are being used
What compression is being used
Where packages are being used to author files

https://www.dafont.com/breamcatcher.font

20

Tools

For creating additional animations, the default Unreal mannequin rig should be used. To use
the same workflow as the framework, Blender should be used with Mr Mannequins tools
installed. For a breakdown on how to install this, refer to
https://jimkroovy.gumroad.com/l/MrMannequinsTools

https://jimkroovy.gumroad.com/l/MrMannequinsTools

21

Optimisation & Profiling

Profiling Script

Describe the process for testing the game

Profiling Graphics & Rendering

Describe the process for testing the game

22

Coding Standards and Summary

Programming Standards

To keep any C++ code inside the project accessible for editing, I’ll be following Unreal’s
coding standards outlined in the engine documentation
(https://docs.unrealengine.com/4.27/en-
US/ProductionPipelines/DevelopmentSetup/CodingStandard/)

Style Guide

What are best practices to make your code / scripty readable?

Commenting Rules

Make sure everything is commented, leave little to chance.

Code Review Procedures

How often will code be reviewed for correct performance and approach?

https://docs.unrealengine.com/4.27/en-US/ProductionPipelines/DevelopmentSetup/CodingStandard/
https://docs.unrealengine.com/4.27/en-US/ProductionPipelines/DevelopmentSetup/CodingStandard/

